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S T O C H A S T I C  M O D E L I N G  O F  T H E  D E V E L O P M E N T  O F  
T H E  T A Y L O R  I N S T A B I L I T Y  IN L I Q U I D  F I L T R A T I O N  IN 
A P O R O U S  M E D I U M  

M. D. Noskov and A. V. Rylin UDC 532.546 

A modified model of  stochastic growth that is controlled by the pressure gradient is used for a numeri- 
cal study of the instahili~ of  the displacement .front of liquids with different densities and viscosities in 
a porous medium. Consideration is given to the effect of  permeability and porosity nonuniformities of 

the medium on the displacement front. 

Introduction. The Taylor instability of the displacement front of liquids in a porous medium develops 
when a heavy liquid displaces a lightweight liquid residing under the former [1] or a more viscous liquid is 
displaced by a less viscous one [2, 3]. A study of  the hydrodynamic Taylor instability is of both scientific and 
practical importance that is related to the appearance of flow instabilities in waterflooding of petroliferous 
strata, propagation of liquid wastes in subsurface aquiferous strata, and some chemical-technology processes. 

The application of analytical methods to the study of Taylor instability encounters serious difficulties 
and is restricted to studying the initiation and asymptotic stage of the development of  instability for fairly sim- 
ple displacement models. The use of numerical methods permits a description of  all stages of the development 
of instability and an examination of more general filtration models 14, 5]. However, deterministic numerical 
models of unstable displacement have a major drawback that lies in the need to impose artificially the initial 
flow disturbance in the torm of an uneven front or a nonuniform distribution of  the medium permeability. 
Here, the lbrmation of the front instability depends on the type of  selected disturbance. Under actual condi- 
tions, the flow instability arises spontaneously as a consequence of  the presence of microheterogeneites of the 
porous medium and fluctuations of  the liquid motion in the pores. Spontaneous and permanent initiation of the 
instability can be realized by introducing a stochastic factor into the numerical model. L. Paterson [6] and L. 
P. Kadanoff 171 proposed the use of  randomly moving particles for modeling unstable liquid displacement in a 
porous medium. The application of the random-walk method is based on the similarity of the equations that 
describe the probability density distribution tbr the occurrence of a randomly moving particle in space and the 
liquid pressure in the medium. The region occupied by the displacing liquid corresponds to an aggregate of 
particles that grows from an injection circuit. The advance of  the displacement front is simulated by attach- 
ment, to an existing aggregate, of a new randomly moving particle released from a surface that corresponds to 
a discharge circuit. A further elaboration of the stochastic approach to the description of an unstable displace- 
ment was the development of a model of growth controlled by the pressure gradient [8, 9]. In this model, the 
probability of advance of the displacement front depends on the normal component of  the pressure gradient. 

The aforementioned stochastic models describe the space-time dynamics of the displacement of liquids 
with various viscosity ratios in a medium that is uniform in its filtration parameters. However, they disregard 
gravitational effects arising in the filtration of liquids with different densities and cannot be used for modeling 
the gravitational Taylor instability. 

The current work deals with a generalization of the model of growth controlled by the pressure gradi- 
ent for describing the motion of the displacement front of liquids with different densities and viscosities in a 
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porous medium with a nonuniform permeability and porosity distribution. The proposed model is used tbr 
studying the Taylor instability for different relationships between the viscous and gravitational forces. 

Formulation of the Stochastic Displacement Model. Consideration is given to the displacement, from 
a porous medium, of a liquid with viscosity lal and density Pl by another liquid with viscosity la2 and density 
92- Both liquids are assumed to be incompressible. Their motion is described in the approximation of piston 
displacement. The porous medium is divided into two regions containing the displaced and displacing liquids. 
Capillary forces at the liquid-liquid interface are disregarded. The filtration rate ~ for each liquid obeys 
Darcy's law lbr viscous flow in a porous medium 

k (grad P! - ,~-~P/), / = 1, 2.  (1) v-~= - P-/ 

The pressure distribution in each region satisfies the equation obtained from the condition of continuity 
of incompressible liquid flow (div v--~= 0) and Darcy's law (1) 

d iv (~(gradP , -~- -~p , ) l=0 ,  l =  1,2. (2) 

X / 

At the liquid-liquid interlace F, the pressures and the filtration velocity components normal to the interface are 
equal: 

P l l  r = P 2 I r ,  (3)  

( ~ .  ,,-~31 r = ( ~  ~ ) 1  r . ( 4 )  

Conditions (3) and (4) in conjunction with the boundary conditions on the discharge and injection circuits per- 
mit calculation of the pressure distribution in the considered region using Eq. (2). 

The velocity of the displacement front is determined by the normal component U,, of the actual flow 
velocity 

u, ,  - - -  - - -  (5)  
m rn 

From the condition of flow continuity (4) it tbllows that the velocity of the displacement front can be calcu- 
lated using the pressure distribution in both the displacing and displaced liquids. The subsequent discussion 
draws on the latter. Within the framework of the stochastic approach, Eq. (5) acquires a probabilistic meaning. 
The probability density ~ for advance of the displacement front at one or another place is taken to be propor- 
tional to the normal component of the actual flow velocity U,, if U,, > 0 and equal to zero for U,, < 0: 

¢.o = 0 (Un) U,, Z - I  . (6) 

The normalization factor Z is defined by the integral over the liquid-liquid interface 

Z =  j'0 (U.) U ~ d S .  

F 

(7)  

The mean velocity of various front regions that corresponds to the probability distribution (6) coincides with 
the actual velocity (5). The introduction of the condition Un > 0 into Eqs. (6) and (7) renders the displacement 
irreversible. The replacement of the deterministic and continuous description of the motion of the displacement 
front by a probabilistic and discrete one is a key element of the stochastic approach. 
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The stochastic model is employed for describing two-dimensional displacement of  liquids in a rectan- 

gular region (0 < x < Lx, 0 < v < Lv). The direction of the vector of  acceleration due to gravity ~-)coincides with 
the direction of the Y coordinate axis. Two types of boundary conditions are examined. In the first case, the 
flow direction is perpendicular to the vector of the acceleration due to gravity. The pressure distribution at the 
outlet (x = L.O and the inlet (x = 0) is specified by the relations 

P l = P o u t + g P l Y  , x = L x ,  O < v < L y ,  

P2 = Pin  + gP~' ,  x = 0 ,  0 < 3' < Lv, 

(8) 

and the lateral boundaries (y = 0, y = L,.) are assumed to be impermeable: 

OP 
- 0 ,  y = 0 ,  y = L y ,  0<x_<L~.. (9) 

Oy 

In the second case, the flow direction coincides with the acceleration due to gravity: at the inlet (y = 0) and 
the outlet (y = Ly), constant pressures Pin  and Pout, respectively, are prescribed and the boundaries x = O, x = 

Lx, 0 < v < Ly are impermeable. 
Numerical  Realization of the Model. Model discretization is carried out with the aid of  a uniform 

rectangular grid with a period h. For each node of the grid (i, j), there is the corresponding element of  the 
medium with the permeability k,,j and the porosity rnij. The node state of  the node is determined by the pres- 
sure Pij, viscosity ~i,i, and density Pi,j of the liquid that occupies the pore space. The elements of  the medium 
corresponding to the grid nodes are regarded as completely filled with the displacing or displaced liquid, i.e., 
the displacement front passes between neighboring nodes. The front advances in discrete steps. The probability 
Wi,i,i',7 of front movement from the node (i, j) to the neigboring node (i', j ' )  with the latter being filled with the 
displacing liquid is defined by the discrete analog of Eq. (6) 

. . . . . .  Z - 1  . Wi i i' i' = 0 (U i i i" j') Ui,j.i',i" 

The velocity of front advance between the nodes is defined by the expression 

gh 
U i,i.i',i" = T i)'i'~'m i.,i . . . .  ( P i j - P i'j" +Gi i i '  f ) ,  G i j.i',i - 2 ( P i ,i + P i',i" ) ( f - J ) " 

The hydraulic conductivity Ti,i,i,f between the nodes is calculated by the formula 

2kiwi ki ' /  

Ti.j,i'i" = ki,i ~.li,i + ki, J, ~2i'i' • 

The normalization factor Z is defined by the expression 

g = Z 0 (Ui,/,i.i') Uij, i 'j , ,  
. . . , . ,  

t d , t  ~l 

where the summation is carried out over all possible directions and regions of  the displacement front. The 
pressure distribution is calculated based on a finite-difference approximation of Eq. (2) with account for the 
conditions of continuity at the liquid-liquid interface 

~,a Tij,i'j" (Pi.j - Pi ' f  + Gij.i'j') = 0 .  

i'j" 

(10) 
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Fig. I. Typical modeling results for displacement at different ratios of the 
liquid viscosities (R = 0.8) (the gray shades show successive positions of 
the front): a) M = 100; b) 10; c) 1; d) 0.1. 

Finite-difference equation (10) is solved by an iteration method using a five-point "cross" pattern [10]. The 
pressure distribution is recalculated after each advance of the front by one node of the grid. 

The time interval At corresponding to one calculational step is determined by the volume of the pore 
space h2mi, f occupied by the displacing liquid in the given step and the liquid flow Q through the injection 
circuit: 

h 2 mi, f ~ =  
Q 

The liquid flow Q is calculated by summing up the flows between the nodes (i, j )  that belong to the injection 
circuit and the neighboring nodes (i', j'): 

Q = Z Ti,i.i',i" (Pi,i- Pi',i' + Gi,i.fj')" 
• . / /  
t d , t  .J  

Results and Discussion. The numerical realization of the model was used for studying the effect of  the 
liquid viscosities and densities on the development of the instability of  the displacement front. Consideration 
was also given to effects related to the nonunitbrmity of the permeability and porosity distributions of the me- 
dium. Calculations were per~brmed on a grid that measured 120 x 60 nodes. 

Analysis of the results of the numerical modeling reveals that the advance of the displacement front in 
a homogeneous medium is determined by the ratios of the liquid viscosities M = lu~/U2 and densities R = 
91/02, the filtration velocity, and its direction relative to the vector of the acceleration due to gravity. In the 
case where the filtration velocity is perpendicular to the acceleration due to gravity (boundary conditions (8) 
and (9)) the formation of the front instability is determined primarily by the ratio of the liquid viscosities M. 
Figure 1 presents typical results of the modeling of the advance of the displacement front in a homogeneous 
medium for various viscosity ratios M and the same density ratio R = 0.8. If the viscosity of the displacing 
liquid is lower than the viscosity of the displaced liquid (M> 1), the stochastic variations of the tYont shape are 
increased, and instability of the liquid flow develops, which manifests itself in the formation of viscous fingers 
(Fig. la). The pressure redistribution in the medium causes dominating viscous fingers to suppress the growth 
of those lagging behind. As the fingers develop, they expand and split into smaller ones. With increase in the 
viscosity of the displacing liquid, the viscous fingers thicken and their development slows down (Fig. l b). 
Similar effects were observed in experimental investigations of the displacement instability in a porous medium 
and in Hele-Shaw cells [11, 12]. If the values of the viscosities are close (M-- 1), stochastic disturbances of  
the flow do not develop and are not suppressed. However, random superposition of the disturbances leads to 
formation of a nonuniform front (Fig. lc). This was observed in experiments on the mutual displacement o f  
homogeneous liquids and is attributed to the nonuniformity of the velocity field as a consequence of the mi- 
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Fig. 2. Modeling results tbr unstable displacement in a heterogeneous me- 
dium (M = 10, R = 0.8): a) inclusion with an increased permeability 
( k i , c / k  = 10); b) same with a decreased permeability (k inc /k  = 0.1), c) 
same with a decreased porosity (minc/rtl = 0 . 1 ) ;  d) same with an increased 
porosity (minc /m = 10). The rectangles denote the inclusion boundaries. 

0.8 

0.6 × - t 

0.4 o - 2  

0.2 , , 
ooi ol i 1o M 1oo 

Fig. 3. Fraction q of  the pore space fil led with the displacing liquid at the 
instant of its reaching the discharge circuit vs. ratio M of  the liquid vis- 
cosities (R = I): I) homogeneous medium; 2) in the presence of  an inclu- 

sion with an increased permeabi l i ty (kine/k = I0 ) ;  3) same wi th  a 
decreased pem]eability (kine/k = 0. l). 

croheterogeneity of  the medium [13]. If the viscosity of the displacing liquid is higher than the viscosity of the 
displaced liquid (M< 1), the development of stochastically appearing protrusions and depressions of the front 
is suppresed by the pressure redistribution, and the line of the front is stabilized (Fig. ld). 

A difference in the densities of the displacing and displaced liquids affects the shape of the displace- 
ment front but does not change the condition of the instability development: M > 1. A decrease in the density 
ratio (R < 1) causes the heavier displacing liquid to flow under the displaced liquid. In the case of unstable 
displacement (M > 1), the development of viscous fingers at the bottom of the front speeds up. With the oppo- 
site density ratio (R > 1), the displacement picture is similar to within a turnover around the horizontal axis. 

Nonuniformities of the permeability and porosity of the medium change the velocity field and affect 
the development of  the instability of the liquid flow. An increase in the permeability, just like a decrease in 
the porosity, increases the actual velocity of the liquid flow. Therefore, inclusions with an increased permeabil- 
ity and a decreased porosity determine the predominant direction of development of viscous fingers. Con- 
versely, inclusions with a decreased permeability and an increased porosity decrease the flow velocity and 
impede the tbrmation of viscous fingers. Figure 2a, b presents typical results of modeling the formation of 
viscous fingers in the presence of rectangular inclusions with a permeability kin c that is increased or decreased 
relative to the permeability k of the basic medium. Figure 2c, d shows the effect of inclusions with a porosity 
min e that is different from the porosity m of the medium on the displacement front. Clearly, the pictures of 
instability development in the presence of permeability and porosity nonuniformities are similar. This is caused 
by the fact that the formation of viscous fingers leads to a pressure redistribution that is similar for the two 
cases. Thus, inclusions detemline the most probable places of formation of viscous fingers and change their 
rate of growth and shape. 
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Fig. 4. Modeling results tor the motion of the displacement front for vari- 
ous relationships between the viscous and gravitational forces: a) R = 0.2 
and M -- 1; b) 5 and 1; c) 0.2 and 0.5; d) 5 and 2. 

An important characteristic of the efficiency of watertlooding of an oil field is the magnitude of the 
water-free extraction of  oil, i.e., the volume fraction of oil displaced from the petroliferous stratum by the in- 
stant of appearance of  water in the production well. In the given model, the fraction q of the pore space filled 
with the displacing liquid by the instant of  its reaching the discharge circuit corresponds to the magnitude of  
the water-free extraction of oil. Figure 3 shows dependences of r I on the ratio M of the liquid viscosities ob- 
tained in modeling the displacement in a homogeneous medium and in a medium with high-permeability 
(kinc/k = ] 0 )  and low-permeability (kinc/k = 0 . 1 )  inclusions (the position and size of the inclusions coincide 
with those shown in Fig. 2a). Conversion to an unstable mode of displacement (M> I) entails a noticeable 
decrease in 11. The presence of inclusions both with increased and with decreased permeability diminishes rl in 
comparison with a homogeneous medium. However, with a stable mode of displacement (M < 1), the effect of  
the inhomogeneity of the permeability of the inclusions on r I is markedly weaker. 

In the case where the flow direction coincides with the vector of acceleration due to gravity, the char- 
acter of the motion of the displacement front is governed by the balance of the viscous and gravitational tbrces. 
If the density of the displaced liquid is lower, and the viscosity is higher, than the corresponding parameters of  
the displacing liquid (R < 1, M > 1), the displacement front is always unstable. An example of the development 
of  gravitational instability is shown in Fig. 4a. Similar pictures were observed in experiments on the two-di- 
mensional displacement of a heavy liquid by a more lightweight one residing under the tbrmer I14]. With the 
opposite ratios of the densities and viscosities of the displaced and displacing liquids (R >_ 1, M < I), the dis- 
placement front is stable (Fig. 4b). In the remaining cases, the motion of the front is determined by the rela- 
tionship between the filtration velocity v and the critical velocity vc that is obtained from a linear analysis of  
the stability [3]: 

kg (Pl - 92) 
V c - -  

la I - la 2 

If the instability is related to the gravitational forces (R < 1) and the viscous forces stabilize the front 
(M < 1), the instability of the displacement front develops at velocities below critical, v < Vc (Fig. 5c). In the 
opposite case (R > 1, M > 1), the roles of the gravitational and viscous forces switch, and the instability of the 
front occurs at velocities above critical, v > v c (Fig. 4d). 

Conclusion. The modified model of growth that is controlled by the pressure gradient adequately de- 
scribes the main regularities of the development of Taylor instability in liquid filtration in a heterogeneous 
porous medium. Calculated results agree with experimental data on the unstable displacement of liquids in thin 
layers of porous media. The proposed model can be used lor predicting the formation of waterflooding tongues 
when oil is displaced from heterogeneous strata and for assessing the dimensions of  the region of propagation 
of  liquid wastes in subsurface strata in solving geoenvironmental problems. 
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NOTATION 

HI, viscosity; p/, density; ~ filtration velocity, the subscript / = I, 2 pertains to the displacing and 
displaced liquids, respectively; k, permeability of the medium; P, hydrostatic pressure; ~acceleration due to 
gravity; U, actual flow velocity; m, porosity of the medium; ~ normal to the liquid-liquid interlace directed 
from the displacing liquid to the displaced liquid; 0~, probability density lbr displacement of the front; dS, ele- 
ment of the liquid-liquid interlace; x, y, Cartesian coordinates; t, time; Ls, L,., dimension of the modeling region 
along the X and Y axes; h, period of the rectangular grid; Z, normalization factor; Q, liquid flow through the 
injection circuit; M, ratio of the viscosities of the displaced and displacing liquids; R, ratio of densities of dis- 
placed and displacing liquids; re, critical velocity; 0, step function (0(x) = 1 for x > 0 and 0(x) = 0 tbr x < 0); 
q, fraction of the pore space filled with the displacing liquid. 
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